

MINICONTROL
6 de agosto

SOLEMNE 1 (18%)
19 de agosto

CONTROL 2 (12%)
3 de septiembre

Luego del 18, solemne 2
y examen

Strings

● Objetivo:
– Introducir tema: strings (cadenas de caracteres)
– Cubrir tema completo

● Temario
– Recuento control de flujo

● Instrucciones If-elif-else, for-range, while
– Capacidades de strings
– Índices, slices, for para strings
– Substrings

Control de flujo

CAPACIDADES
DE

STRING

Acceder a caracteres según su índice

 x = "hola mundo"

● ¿Cuál es el largo del string x?
– len(x)

(entrega 10)

● ¿Qué carácter (símbolo) está en la
posición 3?
– x[3] (entrega "a")

● ¿Qué carácter está al final de x?
– x[-1] (entrega "o")

h o l a m u n d o
0 1 2 3 4 5 6 7 8 9

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Extrayendo substrings usando índices

h o l a m u n d o
0 1 2 3 4 5 6 7 8 9

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1

> x = "hola mundo"

> x[0:4] > x[5:10]
"hola" "mundo"

> x[:4] > x[5:]
"hola" "mundo"

> x[:-6] > x[-5:]
"hola" "mundo"

> x[:] > x[0:0]
"hola mundo ""

> x[-8:-3] > x[-5:8]
"la mu" "mun"

● Substring: porción de un string
● Formato básico para extraer un

substring desde el índice i hasta el
índice j-1:

x[i : j]

Relación con for-range

Recorrer strings con for
Los strings son secuencias
de caracteres. La instrucción
for puede acceder a cada
caracter del string, desde la
izquierda y hacia la derecha.

T
e
x
t
u
a
l

for x in "Textual":
 print(x)

Recorrer strings con for-range
La instrucción range genera
naturalmente índices válidos
para recorrer strings; notemos
los índices 0, 1, …, n-1 cubren
todo un string de largo n.

T en 0
e en 1
x en 2
t en 3
u en 4
a en 5
l en 6

T = "Textual"

for j in range(len(T)):
 print(T[j], "en", j)

Relación con for-range

Slices versus for-range
Es posible reproducir un slice
con for-range, tal como se ve
en este ejemplo.

TIPA
TIPA

T = "ANTIPATIA"
print(T[2:6])

u = ""
for k in range(2,6):

u = u + T[k]
print(u)

Slices con índices inválidos
Tal como con range, si los
índices de un slice no llevan
a seleccionar caracteres, no
hay error; el resultado será
simplemente un string vacío.

1) Kame
2) HAAA
3)
4)
5) H
6) Ha
7)

T = "Kame-Hame-HAAA"
print('1)', T[0:4])
print('2)', T[10:14])
print('3)', T[5:4])
print('4)', T[5:5])
print('5)', T[5:6])
print('6)', T[5:7])
print('7)', T[500:508])

Podemos detectar substrings (in)

● Substring: texto que está
contenido en otro texto
– Ej. "hola" es parte de "hola

mundo"
● La instrucción es in, que

detecta pertenencia
– in entrega True/False

> "pikachu" in "evil pikachu"
True

> "good" in "evil pikachu"
False

● La detección es sensible a
mayúsculas, minúsculas, etc.

● El calce debe ser exacto

> "piKachU" in "evil pikachu"
False

> "pikachu " in "evil pikachu"
False

> "pika chu" in "evil pikachu"
False

Usando in dentro de if, while, etc

● Ejemplo:

a = input("texto1: ")
b = input("texto2: ")

if a in b:
 print(a, "está contenido en", b)
elif b in a:
 print(b, "está contenido en", a)
else:
 print("Los textos son excluyentes")

● Ejemplos de ejecución:

 texto1: gato
 texto2: arigato
 gato está contenido en arigato

 texto1: arigato
 texto2: gato
 gato está contenido en arigato

 texto1: gato
 texto2: perro
 Los textos son excluyentes

Detectar substrings

Redunda: contains es in
El método contains de string
hace lo mismo que in. Pero
in es más sencillo.

Pe$o Arr@ba
hay arroba
hay peso

txt = input()

if '@' in txt:
print('hay arroba')

if txt.contains('$'):
print('hay peso')

Contar ocurrencias
El método count cuenta la
frecuencia de un substring
en el string. Si arroja cero,
es que el substring no es tal.

Hay 3 a-es
Hay 0 b-es
Hay 1 ata-s

txt = 'Batalla'

x = txt.count('a')
y = txt.count('b')
z = txt.count('ata')
print('Hay', x, 'a-es')
print('Hay', y, 'b-es')
print('Hay', z,'ata-s')

Encontrar substrings

Podemos encontrarlos
Con el método index podemos
encontrar substrings. Si el
substring está, obtenemos su
primer índice. Si no, se lanza
un error.

jam empieza en 4
eso empieza en 12

txt = 'pan jamon queso'

i = txt.index('jam')
j = txt.index('eso')

print('jam empieza en',i)
print('eso empieza en',j)

Podemos reemplazarlos
El método replace permite
reemplazar toda aparición
de un substring por otro. El
resultado es un nuevo string.

pan jamon queso
p4n j4mon queso
p4n j4mon quEso
p4n j4m@n quEs@

tt = 'pan jamon queso'
print(tt)
x = tt.replace('a','4')
print(x)
y = x.replace('e','E')
print(y)
z = y.replace('o','@')
print(z)

Problemas

● Escriba un programa cuyo input sea un string y que imprima en
pantalla cuántos espacios tiene

● Escriba un programa cuyo input sea un string y que imprima en
pantalla cuántas vocales y cuántos dígitos tiene (en líneas
separadas)

● Escriba un programa que reciba dos strings y que imprima en
pantalla si los strings son iguales, si primero está contenido en el
segundo y viceversa

Problemas

● Escriba un programa que reciba un string y que imprima ese
string pero cuyas vocales han sido reemplazas por números
– La a se reemplaza por 4
– La e se reemplaza por 3
– La i se reemplaza por 1
– La o se reemplaza por 0

● Escriba un programa que reciba un string y que imprima su forma
reversa
– Ante el input dracula, debe imprimir alucard
– Ante el input cadete, debe imprimir etedac
– Ante el input fondas, debe imprimir sadnof

